Story image

HPE and TACC build the world’s first solar-powered supercomputer

Visitors arriving at the Texas Advanced Computing Center at the University of Texas immediately notice large solar panels covering the parking lot. These panels power Hikari, the world’s first solar-powered supercomputer, which is currently calculating biology applications to help solve the Zika virus crisis.

Supercomputers have the power to transform science and innovations, but the amount of energy they require has been a limiting factor towards their expansion. Because traditional supercomputers consume vast amounts of electricity and produce a lot of heat, larger cooling facilities must be constructed to ensure proper operation. To overcome this challenge, the Texas Advanced Computing Center partnered with the New Energy and Industrial Technology Development Organization (NEDO), a Japanese government agency, NTT Facilities Inc. and HPE to develop Hikari.

Energy-Efficient Supercomputers

Hikari leverages the Apollo 8000 warm water cooling system that eliminates the need for Computer Room Air Handlers (CRAH) and, by using dry-coolers instead of chillers, significantly reduces the cooling energy that would normally be required. In addition, the Apollo 8000 system was designed to minimize the supporting data center infrastructure to a minimum, driving savings not only on the operating expenses but on the upfront capital expenses too.

Transmitting from the photovoltaic (PV) array high-voltage DC source straight to a high-voltage DC computer is truly a game changer.

The Data Center of the Future

As data centers are rapidly growing in size to meet data and computing demands, the amount of power and density required to run the operations has increased. Since we lose energy efficiency every time AC converts to DC, Dan Stanzione, executive director at the Texas Advanced Computing Center, says Hikari is a large-scale experiment to run a production-scale data center entirely on DC power. At the core of the project is the HPE 8000 server. The supercomputer runs on about 200,000 watts of DC power. Other components of Hikari include DC battery systems, DC air-conditioning, DC lighting, DC supply and solar panels.

Since the Hikari team launched the measurement phase at the end of August, more than 30% of the total power used by the supercomputer has been supplied by renewable energy sources.  During some daylight hours, the system was operating at 100% from renewable sources. The team is now working on measuring DC power and the amount of power saved from HDVC distribution alone.

Partnering for the Future of Supercomputers

Stanzione says Hewlett-Packard Enterprise has been a key partner on this project. Texas Advanced Computing Center selected the Apollo 8000 for the core of the Hikari because HPE was the only manufacturer that could deliver an HVDC-supplied cluster with the required size and speed.

Opinion: Critical data centre operations is just like F1
Schneider's David Gentry believes critical data centre operations share many parallels to a formula 1 race car team.
MulteFire announces industrial IoT network specification
The specification aims to deliver robust wireless network capabilities for Industrial IoT and enterprises.
Google Cloud, Palo Alto Networks extend partnership
Google Cloud and Palo Alto Networks have extended their partnership to include more security features and customer support for all major public clouds.
DigiCert conquers Google's distrust of Symantec certs
“This could have been an extremely disruptive event to online commerce," comments DigiCert CEO John Merrill. 
Schneider Electric's bets for the 2019 data centre industry
From IT and telco merging to the renaissance of liquid cooling, here are the company's top predictions for the year ahead.
China to usurp Europe in becoming AI research world leader
A new study has found China is outpacing Europe and the US in terms of AI research output and growth.
Google says ‘circular economy’ needed for data centres
Google's Sustainability Officer believes major changes are critical in data centres to emulate the cyclical life of nature.
52mil users affected by Google+’s second data breach
Google+ APIs will be shut down within the next 90 days, and the consumer platform will be disabled in April 2019 instead of August 2019 as originally planned.